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Exercise 40

Solve the diffusion equation

ut = κuxx, −a < x < a, t > 0,

u(x, 0) = 1 for − a < x < a,

u(−a, t) = 0 = u(a, t) for t > 0.

Solution

Solution by the Laplace Transform

The PDE is defined for t > 0 and we have an initial condition, so the Laplace transform can be
used to solve it. It is defined as

L{u(x, t)} = u(x, s) =

ˆ t

0
e−stu(x, t) dt,

which means the derivatives of u with respect to x and t transform as follows.

L
{
∂nu

∂xn

}
=
dnu

dxn

L
{
∂u

∂t

}
= su(x, s)− u(x, 0)

Take the Laplace transform of both sides of the PDE.

L{ut} = L{κuxx}

The Laplace transform is a linear operator.

L{ut} = κL{uxx}

Transform the derivatives with the relations above.

su(x, s)− u(x, 0) = κ
d2u

dx2

From the initial condition, u(x, 0) = 1, we have

su(x, s)− 1 = κ
d2u

dx2
.

Bring the term with u to the other side and divide both sides by κ.

d2u

dx2
− s

κ
u= −1

κ
(1)

This is an inhomogeneous second order ODE, so the general solution is the sum of the
complementary and particular solutions.

u= uc +up,
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uc is the solution to the associated homogeneous ODE,

d2uc
dx2
− s

κ
uc = 0,

which can be written in terms of hyperbolic sine and hyperbolic cosine.

uc(x, s) = A(s) cosh

√
s

κ
x+B(s) sinh

√
s

κ
x

The inhomogeneous term is a constant, so we seek a particular solution of the form, up = C1. Plug
this into the ODE in equation (1) to determine C1.

− s
κ
C1 = −

1

κ
→ C1 =

1

s

Hence, we have for the particular solution

up(x, s) =
1

s
.

The general solution to equation (1) is thus

u(x, s) = A(s) cosh

√
s

κ
x+B(s) sinh

√
s

κ
x+

1

s
.

Our task now is to use the provided boundary conditions at x = −a and x = a to determine A(s)
and B(s). Take the Laplace transform of both sides of them.

u(−a, t) = 0 → L{u(−a, t)} = L{0}
u(−a, s) = 0 (2)

u(a, t) = 0 → L{u(a, t)} = L{0}
u(a, s) = 0 (3)

Plugging x = −a into the general solution and using equation (2), we get

u(−a, s) = A(s) cosh

√
s

κ
a−B(s) sinh

√
s

κ
a+

1

s
= 0.

Plugging x = a into the general solution and using equation (3), we get

u(a, s) = A(s) cosh

√
s

κ
a+B(s) sinh

√
s

κ
a+

1

s
= 0.

Solving this system of two equations, we find that

A(s) = − 1

s cosh
√

s
κa

B(s) = 0.

Therefore,

u(x, s) =
1

s

(
1−

cosh
√

s
κx

cosh
√

s
κa

)
.
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Now that we have u(x, s), we can get u(x, t) by taking the inverse Laplace transform of it.

u(x, t) = L−1{u(x, s)}

= L−1
{
1

s
−

cosh
√

s
κx

s cosh
√

s
κa

}

= L−1
{
1

s

}
− L−1

{
cosh x√

κ

√
s

s cosh a√
κ

√
s

}

= 1− L−1
{

cosh x√
κ

√
s

s cosh a√
κ

√
s

}
The inverse Laplace transform of this ratio of hyperbolic cosine functions is not located in my
table of transforms, so it’s necessary to resort to complex variables to solve it. Let

F (s) =
cosh x√

κ

√
s

s cosh a√
κ

√
s
.

Since cosh z = cos iz, singularities (that is, where the denominator equals 0) occur where

s = 0

i
a√
κ

√
s =

1

2
(2n+ 1)π → sn = − κ

4a2
(2n+ 1)2π2, n = 0, 1, 2, . . . .

Using Cauchy’s residue theorem, we can obtain F (t) by evaluating the residues of estF (s) at these
singularities and adding them all together.

F (t) = Res
s=0

[estF (s)] +
∞∑
n=0

Res
s=sn

[estF (s)]

Determine the first term.

Res
s=0

[estF (s)] = Res
s=0

est

s

cosh x√
κ

√
s

cosh a√
κ

√
s

Use the Taylor series expansions for each of the functions about s = 0.

ex = 1 + x+
x2

2
+ · · ·

coshx = 1 +
x2

2
+
x4

24
+ · · ·

Substituting these expressions, we get

est

s

cosh x√
κ

√
s

cosh a√
κ

√
s
=

1

s
(1 + st+ · · · )

1 + 1
2

(
x√
κ

√
s
)2

+ · · ·

1 + 1
2

(
a√
κ

√
s
)2

+ · · ·
.

The residue at s = 0 is the coefficient of the 1/s term, so all we need is one term from the long
division.

est

s

sinh x
c

√
s

sinh a
c

√
s
=

1

s
(1 + st+ · · · ) (1 + · · · )
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Thus,
Res
s=0

[estF (s)] = 1.

Now we will determine the second term.

Res
s=sn

[estF (s)] = Res
s=− κ

4a2
(2n+1)2π2

est

s

cosh x√
κ

√
s

cosh a√
κ

√
s

Let

p(s) = est cosh
x√
κ

√
s

q(s) = s cosh
a√
κ

√
s.

Since

p(s = sn) = e−
κ

4a2
π2(2n+1)2t cos

[π
2
(2n+ 1)

x

a

]
6= 0

and

q(s = sn) = 0

and

q′(s = sn) = −
1

4
(−1)n(2n+ 1)π 6= 0,

the residue at s = sn is

Res
s=sn

[estF (s)] =
p(sn)

q′(sn)

= − 4

π

(−1)n

2n+ 1
e−

κ
4a2

π2(2n+1)2t cos
[π
2
(2n+ 1)

x

a

].
We now know the inverse Laplace transform of the ratio of hyperbolic cosines.

F (t) = Res
s=0

[estF (s)] +

∞∑
n=0

Res
s=sn

[estF (s)] = 1−
∞∑
n=0

4

π

(−1)n

2n+ 1
e−

κ
4a2

π2(2n+1)2t cos
[π
2
(2n+ 1)

x

a

]
Plugging this into the formula for u(x, t), we have

u(x, t) = 1−

{
1−

∞∑
n=0

4

π

(−1)n

2n+ 1
e−

κ
4a2

π2(2n+1)2t cos
[π
2
(2n+ 1)

x

a

]}
.

Distribute −1.

u(x, t) = �1− �1 +
4

π

∞∑
n=0

(−1)n

2n+ 1
e−

κ
4a2

π2(2n+1)2t cos
[π
2
(2n+ 1)

x

a

]
Therefore,

u(x, t) =
4

π

∞∑
n=0

(−1)n

2n+ 1
e−

κ
4a2

π2(2n+1)2t cos
[π
2
(2n+ 1)

x

a

]
.
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Solution by Separation of Variables

In order to verify the solution obtained by the Laplace transform, we’ll solve the same exercise
with separation of variables. The method of separation of variables can be applied to solve it
because the PDE is linear and homogeneous. Assume a product solution of the form,
u(x, t) = X(x)T (t), and plug it into the PDE.

XT ′ = κX ′′T

Bring all terms with t and constants to the left side and all terms with x to the right side.

T ′

κT
=
X ′′

X
(4)

Now plug the product solution into the boundary conditions. We assume T (t) is not zero.

u(−a, t) = 0 → X(−a)T (t) = 0 → X(−a) = 0 (5)

u(a, t) = 0 → X(a)T (t) = 0 → X(a) = 0 (6)

Because the left side of equation (4) is a function of t and the right side is a function of x, the
only way both sides can be equal is if they equal a constant. In order to obtain a nontrivial
solution for the resulting ODE in x, this constant must be negative.

T ′

κT
=
X ′′

X
= −λ2

The PDE has thus been reduced to two ODEs, one in t and one in x:

T ′ = −κλ2T and X ′′ = −λ2X.

The solution for the ODE in x can be written in terms of sine and cosine.

X(x) = C2 cosλx+ C3 sinλx

Plug in x = −a and use equation (5).

X(−a) = C2 cosλa− C3 sinλa = 0

Plug in x = a and use equation (6).

X(a) = C2 cosλa+ C3 sinλa = 0

Add these two equations together.
2C2 cosλa = 0

We assume that C2 6= 0 because otherwise a trivial solution would result. C3 can be set to 0.

cosλa = 0 → λa =
1

2
(2n+ 1)π → λn =

1

2a
(2n+ 1)π, n = 0, 1, 2, . . .

The values of the constant λn that satisfy the boundary conditions are called the eigenvalues, and
the functions Xn(x) that satisfy the ODE are called the eigenfunctions.

Xn(x) = cos
[π
2
(2n+ 1)

x

a

]
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The solution for the ODE in t can be written in terms of the exponential function.

T (t) = C4e
−κλ2t

Plugging in the eigenvalues, we get

Tn(t) = C4e
− κ

4a2
(2n+1)2π2t.

The general solution to the PDE is the sum of all eigenfunctions with their associated eigenvalues
(the principle of linear superposition).

u(x, t) =

∞∑
n=0

Xn(x)Tn(t)

=
∞∑
n=0

Dne
− κ

4a2
(2n+1)2π2t cos

[π
2
(2n+ 1)

x

a

]
To determine this final constant Dn, we make use of the provided initial condition, u(x, 0) = 1.

u(x, 0) =
∞∑
n=0

Dn cos
[π
2
(2n+ 1)

x

a

]
= 1

We will solve this equation for Dn by taking advantage of the orthogonality of the cosine function.
Multiply both sides by cos

[
π
2 (2m+ 1)xa

]
, where m is a positive integer.

∞∑
n=0

Dn cos
[π
2
(2n+ 1)

x

a

]
cos
[π
2
(2m+ 1)

x

a

]
= cos

[π
2
(2m+ 1)

x

a

]
Integrate both sides with respect to x over the domain it is defined—from −a to a.

ˆ a

−a

∞∑
n=0

Dn cos
[π
2
(2n+ 1)

x

a

]
cos
[π
2
(2m+ 1)

x

a

]
dx =

ˆ a

−a
cos
[π
2
(2m+ 1)

x

a

]
dx

Bring the integral inside the sum on the left.

∞∑
n=0

Dn

ˆ a

−a
cos
[π
2
(2n+ 1)

x

a

]
cos
[π
2
(2m+ 1)

x

a

]
dx =

ˆ a

−a
cos
[π
2
(2m+ 1)

x

a

]
dx

Unless n = m, the integral of the product of cosine functions is 0 because of orthogonality, so
every term in the series vanishes except for the one where n = m.

Dn

ˆ a

−a
cos2

[π
2
(2n+ 1)

x

a

]
dx =

ˆ a

−a
cos
[π
2
(2n+ 1)

x

a

]
dx

Evaluate the integrals.

Dn · a =
4a

π

(−1)n

2n+ 1

Thus,

Dn =
4

π

(−1)n

2n+ 1
.

Therefore,

u(x, t) =
4

π

∞∑
n=0

(−1)n

2n+ 1
e−

κ
4a2

(2n+1)2π2t cos
[π
2
(2n+ 1)

x

a

]
,

which is the same answer we obtained using the Laplace transform.
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